EL PLANO.
Primero definamos lo que es producto cruz, sean vectores ^v = (x1, x2, x3 ) y ^w = (y1, y2, y3), entonces lo definimos por medio del cálculo del determinante siguiente:
el cual también es un elemento de IR³.
Ahora sí definimos al plano, un plano en tres dimensiones es el lugar geométrico de los puntos, por los que u punto móvil se traslada de tal forma que el vector de él a un punto fijo de él es siempre perpendicular a un vector fijo llamado normal al plano. Consideremos la ecuación del plano como Ax + By + Cz + D = 0 con A, B, C no todas nulas.
Para dos vectores dados cualesquiera ^v y ^w su producto cruz (^v × ^w) es un vector perpendicular a ^v y a ^w y sus números directores son los mismos que los de la normal al plano.
LA ESFERA.
El lugar geométrico de una esfera, es el lugar de un punto en el espacio que se mueve de tal manera que su distancia a un punto fijo es siempre constante. El punto fijo se llama centro y la distancia radio. Su ecuación es muy parecida a la de la circunferencia, esta es: (x - a)² + (y - b)² + (z - c)² = r², donde r es el radio y (a, b, c) es el centro del cual hablamos. En el caso de la circunferencia hablamos de recta tangente, pero en el caso de la esfera hablaremos del plano tangente a una esfera, el cual se obtiene buscando el vector que describe el centro con el punto de contacto y determinar la ecuación de la normal al plano.
La forma general de la ecuación de la esfera es : x² + y² +z² + Gx + Hy + Iz + K = 0
Coordenadas esféricas.
Es posible representar un punto en el espacio en otro sistema de coordenadas denominado coordenadas esféricas, el cual considera la distancia al origen y los ángulos que forma ese radio vector con los ejes X y Z, eto implica que el punto P(x, y, z) puede escribirse como: P(r, a, q).
Teorema:
Las coordenadas rectangulares y esféricas de un punto en el espacio están ligadas por las relaciones:
X = rSen(a)Cos(q); y = rSen(a)Sen(q); z = rCos(a).
No hay comentarios:
Publicar un comentario